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Abstract

In this chapter, we develop a Bayesian Pairwise Classifier framework that is suitable for pattern
recognition problems involving a moderately large number of classes, and apply it to two character
recognition datasets. A C class pattern recognition problem (e.g. C = 26 for recognition of English
Alphabet) is divided into a set of (f) two-class problems. For each pair of classes, a Bayesian classifier
based on a mixture of Gaussians (MOG) is used to model the probability density functions conditioned
on a single feature. A forward feature selection algorithm is then used to grow the feature space, and
an efficient technique is developed to obtain a MOG in the larger feature space from the MOG’s in
the smaller spaces. Apart from improvements in classification accuracy, the proposed architecture also
provides valuable domain knowledge such as identifying what features are most important in separating
a pair of characters, relative distance between any two characters, etc.

1 Introduction

There are two phases in a typical pattern recognition problem: The learning/training phase and the gen-
eralization phase. In the learning phase, a predictor or classifier is designed from already labeled training
examples. In the generalization phase, a novel example is assigned a class label by the trained classifier.
The ability of the classifier to generalize to novel examples not seen during training is central to pattern
recognition. It is typically measured in terms of the empirical generalization accuracy defined as the fraction
of novel examples (test examples) that were assigned the right class label by the trained classifier.

Depending on the domain of application, the raw input could be a set of observed properties (e.g.
symptoms of a disease), a one dimensional signal (e.g. voice recognition, text recognition etc.), or even an
image (e.g. face recognition, character recognition etc.). It is neither feasible nor practical to learn a mapping
from such complex input spaces to class labels. Hence, a preprocessing stage involving data conditioning
followed by feature eztraction is used to transform the raw sensory input into a small set of features that the
classifier can operate on. This is all the more true for character recognition problems where the input is an
image of handwritten characters. Thus, the two stage learning process can be expressed in terms of a pair
of mappings:

xEIl)yE}'i)weﬂ, 1)

where the first mapping ¥ : Z — F, called the feature extractor, transforms an input vector x in the input

space T into a feature vector y in some feature space F, and the second mapping ® : F — , called the
classifier, assigns a class label w € Q@ = {w;,ws,...,wc} to the feature vector y. For example, in the
first character recognition problem that is considered in this chapter, the input images of characters are
transformed into a set of 16 properties such as mean positions of on pixels, their variance, and mean edge
count from left to right and bottom to top, etc. In the second problem, 30 tangent vectors are computed
from each character image. Although domain knowledge is used to extract these features and reduce the
16384 dimensional (a 128x 128 character image) input space to a 30 dimensional feature space, it is not
necessary that all the extracted features will be actually useful in classification. Hence a smaller set of these
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1.2 Probabilistic learning framework

Once a suitable feature space F is obtained by feature extraction/selection methods, one has to discriminate
among different classes in the feature space F. The input to the classifier mapping ® : F — €2 is a feature
vector y = ¥(x) for any input x € Z. The probabilistic learning framework, popular in the statistical pattern
recognition community, is used for modeling ® in this work. There are a number of classifiers with different
properties that have evolved from this framework.

In the probabilistic learning framework [1, 6], input patterns and class labels are assumed to be stochas-
tically independent and identically distributed random variables X and € respectively. Since feature vectors
are obtained from the input patterns, they are also assumed to be random variables Y. In the following
description of the probabilistic learning framework, only variables Y and © are used since once & is fixed,
for every X there is a corresponding Y. The salient features of the probabilistic learning framework are as
follows:

e Y and  are sampled from an unknown joint probability density function py,a(y,w).

e Input patterns belong to one of the C classes with the prior probabzhty of a sample being in class w,
given by P(2 = w,) = P(w,). The priors are constrained by Z L Plwe) = 1.

o The overall probability density function p(y) is a mixture of C class conditional probability density

functions computed in the feature space i.e. {p(Y = y|Q = w.) = p(ylwe)}y
C
p(y) = Y P(we)p(ylwe) (4)
c=1
o The posteriori probability P(Q = w.|Y =y) = P(w.|y) of pattern y belonging to class w, is given by
the Bayes rule:
P(we)p(ylwe)
Pw = — 5

where the denominator (see 4) is a normalizing factor such that ZCC—_-1 P(w.ly) =1.

The classifier ®(y) tries to estimate these posterior probabilities {P(w.]y)}S.;. Using these estimates,
it assigns class label w(y) based on the mazimum aposteriori probability (MAP) rule,

(y) = w(y) = arg_max_P(wly). (6)

The misclassification error for the MAP rule is given by

Evnn(B) = / (1 - max Pluely))dy. )
s

A training set X = {X.}S_, C Z, where X, is the set of training inputs in class w,, is available for
supervised learning of ®. After feature extraction, the corresponding training data is denoted by Y =
{¥e}S., C F, where for each sample x € X, there is a corresponding y € Y, such that y = ¥(x).

1.3 Classifier Taxanomy

There are two broad categories into which most of the classifier architectures can be divided: DENSITY BASED
and REGRESSION BASED [7].

1. DENSITY BASED classifiers estimate the class conditional probabiliy density functions {p(y|w.)}<;
and use these to compute the aposteriori probabilities using the Bayes rule (5). Once the estimated
aposterior probabilities are available, the MAP rule (6) can be used to assign y a class label w(y). In



2.1 Pairwise Classifier Architézture

Figure 1 shows the BPC framework. Each classifier ¢;; has an associated feature extractor denoted by
i + I = Fij that transforms an input x € Z into a feature vector 9;;(x) € F;;. The output of ¢;; is an
estimate of the posterior probability P;;(w;|ti;(x)) (Pij(w;|vi;(x)) = 1 — Pij(wsts5(x)))-

Each ¢;; is implemented as a Bayesian classifier that uses two mixture of Gaussians (MOG), one for class
w; and one for class w;, to model the probability density functions p(ts;(x)|wk), k = 4, 5:

(‘ i)

B3 (X)eon) = Zn“”’g(zng ORI R (10)

where n(” ) is the number of Gaussians in the mixture for class wg, and p,('” ) (e Fi;) and 2;(:;) are the

mean vector and covariance matrix of the a** Gaussian in the mixture of class wy, for the classifier ¢;;. The
Gaussian function G is given by:

633 T) = e -5 - 7B )] B

where y = 1;;(x) and d = |F;;| = the dimensionality of the feature space F;;. Bayes rule is used to compute
the classifier output:

5 (1 = Py (wil; P (x)|wz)Pz1 (wi) =i ' 12
i (%35 (x)) = Pij(wilthi; (x)) = B0 () oe) P () +p(¢,J(x)le)P,, (wj) iy (12)

where Pij (wr) are the estimated class priors based on the training data:

| Xk |
EARSES

Pyj(wr) = (13)

The problem of finding the right set of features (Fi;) and the set of pa,raméters {ﬂ,(e”a’), i (i) 2(”)}

Va=1.. .ng’j ), k =1,j, and that of finding the right number of mixtures nsc ) are discussed next.

2.2 Feature Selection

Feature selection is done separately and independently for each pairwise classifier. Let F = {1,2,...,D}
denote the index set of all features and y = #;;(x) € Fi; C F denote the feature vector corresponding to x.
In order to select the most discriminating features for the class pair (w;,w;), a relevance R(F;;) is assigned
to the feature set F;; based on the log odds of estimated class posteriors over the training set &; U Xj:

P, ~(w,~|¢,~(x) m (wjhi; (%))
1 ~ J J 4
xL:;f,- % P, ij (wj W)ij (x)) |X | x;\f ‘L] (wzw'zj (x)) (1 )

Note that the relevance depends on estimates of pairwise posteriors of P;;(wg|i;(x)), which in turn depends
both on the feature space F;; and the parameters used for modeling the pdf in Equation (10). The algorithm
for feature selection for the class pair (w;,w;) is summarized below:

1

1. Initialize Fi; = argmaxser R(f).
2. Augment the feature set sequentially as follows:

(a) Find the next best feature f to add to Fij:
f «arg fer]r?lg)}” R(Fij + f), | (15)

where (Fi;j + f) denotes the feature set formed by augmenting feature f in the feature set F;;.




final dec{sion ) A‘A uAAJi AA ﬂ)ﬁ\

o] ppAip FRBO#B
e Co¥ececOl
.A‘/classiﬁer gpngF FFF
=t YK KRK kK
_ 95C59S 555 &
¥ ———{10 X UAXXXaY X

1,2)

=
(@

Y

Figure 1: Pairwise classifier architecture: (g)
pairwise classifiers with respective feature selec- Figure 2: Some examples of letters in LETTER-I
tors dataset [21]

2.3 Combining the pairwise classifiers

The outputs of the (g) classifiers can be combined to obtain the final output in two ways: (i) by simple
voting [22], or (i) by using the MAP rule on an estimate of the overall aposterior probabilities obtained
from the outputs of the pairwise classifiers [23]. In the voting combination scheme, a count c(wg|x) of the
number of () classifiers that labeled x into class w,

c(welx) = Y I(ar (hix (x)) < 0.5) + > I(¢gi(Pri(x)) > 0.5), (25)

i<k i>k
is used. Here I(bool) is the indicator function, which is 1 when the bool argument is true, and 0 otherwise.
The input x is assigned the class label for which the count is maximum. i.e. w(x) = argmax=1...c c(wk|x).

In another approach to combining pairwise classifiers, proposed recently [23], the overall posterior prob-
abilities p; = P(w;|x) Vi = 1...C are estimated for some x from the (g) posterior probabilities given by 12

as follows. Denote m;; = |X;| + |X;|, rij = ¢i(i(x)) and v;; = p—-;-LpT The goal is to find an estimate p; of
true posteriors P(w;|x) such that v;; is close to r;j, Vi # j. Since there are C — 1 independent parameters but
(g) equations, it is not possible in general to estimate p; so that v;; = r;; Vi # j. Hence only an approximate
solution is sought. The closeness criteria that forms the objective function for finding p = (p1,pe,...pc) is

the weighted KL-distance between r;; and v;;:

I—T,'j

J(p) = Z mij [T,‘j log 52 + (1 - T‘ij) lOg (26)
J

i<j i 1-wy
This results in the following algorithm.
1. Start from an initial guess for p; = JI%’LIl’ and evaluate corresponding v;; using the definition above.
2. Repeat the following updates for i = 1,2,...,C, 1,2,... till convergence:
2 i MijTij

: 27)
> i MiVij

i + P
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Classifier “LETTER LETTER-II

Train Test Train Test
k-NN 91.2 (0.31) 89.9 (0.42) | 91.9 (0.39) 89.5 (0.44)
MLP 80.2 (0.67) 79.3 (0.73) | 79.3 (0.71) 76.2 (0.81)
MLC . | 84.4(0.34) 82.7(0.49) | 81.4 (0.44) 79.5 (0.51)

BPC(L,V) | 87.2 (0.45) 85.4 (0.57) | 83:7 (0.52) 82.1 (0.63)
BPC(IL,M) | 87.6 (0.39) 85.3 (0.49) | 84.9 (0.51) 83.3 (0.59)
BPC(n,V) | 88.9 (0.26) 86.2 (0.33) | 85.6 (0.36) 83.1 (0.40)
BPC(n,M) | 89.5 (0.24) 87.6 (0.35) | 87.9 (0.39) 86.3 (0.46)

Table 1: Average Training and test Accuracy (standard deviations) for multi layered perceptrons(MLP),
Maximum likelihood classifier (MLC), Bayesian pairwise classifier with single Gaussian with voting
combination method (BPC(1,V)), and MAP estimate combination (BPC(1,M)), and Bayesian pairwise
classifier with mixture of Gaussian for voting (BPC(n,V)) and MAP estimate (BPC(n,M)) combination.

Classifier LETTER-I LETTER-II

FEATURES GAUSSIANS | FEATURES GAUSSIANS
BPC(1) 1.3 1.0 13.5 1.0
BPC(n) 8.2 1.1 9.8 15

Table 2: Number of features used (FEATURES) and number of Gaussians in the mixture of Gaussians pdf’s
(GAUSSIANS), averaged over all the () Pairwise classifiers for both BPC(1) and BPC(n) case.

number of features required. Distribution for total usage of different features over all the pairwise classifiers
is shown in Figure 3. For both BPC{(1) and BPC(n), the distribution of usage of different features looks
considerably similar for both datasets. In BPC(n) classifiers, the average number of Gaussians per pairwise
classifier is more than 1 but the number of features required is significantly less than those required by
BPC(1) classifier. Further, the fact that some pairwise classifiers required more than 1 Gaussians per class
to model their pdf’s, shows that the data sets were not exactly unimodal and this explains the difference in
performance of BPC(1) and BPC(n) classifiers. '

4 Domain Knowledge Extraction

The pairwise architecture with Bayesian classifiers based on mixture of Gaussians, makes it possible to
extract several kinds of domain knowledge from the trained predictors, for example, features that are useful
for distinguishing between particular pair of classes, a measure of distance between classes etc. Domain
knowledge extracted from the character recognition datasets is described in this section.

4.1 Overall Iinportance of Features

Figure 3 shows the histogram of the number of times a feature was actually used in the pairwise classifiers for
both BPC(1) and BPC(n) variants. For the LETTER-I dataset, the least used feature was vertical position
of the box (feature 2), and the most used feature was edge count from bottom to top (feature 15). This
kind of domain knowledge could reduce the cost of measuring different properties (features) of the objects
once it is known what properties (features) are more useful than others for the overall task. Such domain
knowledge is very useful in applications like remote sensing classification problems, where certain types of
sensors are more useful than others for a given application [19].



- A B C D E ¥ G H 1 J K L M N [&] P Q R S T U Vv w X Y Z

A - 37 39 45 45 42 44 36 45 38 43 48 37 48 33 45 39 37 40 48 38 40 35 28 39 36
B 9 - 37 21 11 25 30 21 38 33 29 34 33 29 25 19 25 13 18 36 44 37 45 33 39 19
C 7 11 - 44 18 38 15 21 29 38 16 33 33 41 18 40 30 49 41 40 27 40 44 42 22 47
D 13 10 12 - 26 38 23 25 31 33 31 34 33 31 18 18 42 22 32 31 45 39 39 40 34 41
E 8 2 5 8 - 41 22 19 29 28 34 36 32 46 27 33 41 26 29 34 33 47 45 19 26 20
F 8 10 12 12 11 - 28 40 37 42 33 38 32 41 38 18 37 39 24 22 43 41 38 33 26 31
G 13 16 10 10 9 8 - 18 40 30 21 34 23 36 15 36 20 31 38 34 26 42 32 32 45 43
H 10 10 [] 7 4 i1 4 - 42 29 18 44 34 35 13 39 17 18 38 37 26 38 33 22 36 53
1 11 8 b 7 8 12 10 8 - 22 31 46 36 44 44 32 35 39 25 49 42 40 44 31 36 41
J 10 12 10 11 8 13 8 7 4 - 29 38 39 42 20 38 28 42 26 39 34 41 37 30 36 28
K 10 9 [ 11 14 8 12 5 7 7 - 36 37 33 34 33 35 35 22 37 34 42 38 13 47 29
L 12 10 7 11 12 7 13 13 10 8 11 - 35 39 43 39 36 32 51 35 38 38 42 31 33 47
M 14 10 6 7 4 6 9 12 5 12 11 [ - 23 25 34 26 28 29 41 29 38 27 30 40 33
N 10 b 11 10 8 10 13 12 8 7 8 9 10 - 28 33 37 40 48 41 36 44 29 43 40 42
[9) 11 9 8 11 5 8 13 5 8 3 9 11 8 7 - 28 168 30 36 31 27 39 43 33 36 29
P 11 6 11 3 7 11 13 10 12 12 7 7 7 8 9 - 28 20 30 38 41 48 35 31 36 36
Q 10 8 10 12 15 12 8 5 7 8 11 15 7 12 8 9 - 39 27 36 18 41 37 32 42 39
R 9 12 13 9 5 11 10 9 11 11 11 8 9 12 12 4 13 - 13 35 38 40 38 38 44 47
S 12 8 13 13 11 12 13 9 7 9 9 14 4 9 10 9 9 6 - 42 41 43 42 25 37 28
T 10 9 9 7 8 9 8 11 11 9 8 6 7 9 7 11 9 8 13 - 34 35 39 34 33 33
U 7 9 10 12 6 10 9 10 7 7 9 7 7 8 8 9 5 8 9 7 - 42 42 38 38 42
\ 7 8 7 7 11 12 10 12 6 8 12 6 12 12 9 13 9 8 9 11 10 - 24 33 28 41
w17 11 10 7 8 10 7 7 7 5 11 6 7 8 10 8 10 7 8 7 10 12 - 36 32 40
X 4 9 12 13 8 13 13 7 11 13 5 8 4 13 9 11 11 13 8 13 10 6 5 - 34 38
Y 7 (] 5 7 3 8 13 9 7 6 11 5 12 10 8 11 11 9 11 11 12 13 10 11 - 36
Z 8 4 10 10 9 9 11 12 13 11 9 12 3 6 5 10 2 11 12 10 6 7 b5 11 7 -

Table 3: The lower triangular matrix entries denote the number of features used for each pair of classes and
the upper triangular matrix denotes the rounded relevance measure in the corresponding feature space.

number of modes for a class in a given feature space. The BPC framework addresses both these problems
efficiently by the growing and pruning algorithm described in section 2.2. It also highlights the fact that the
number of modes in a distribution is conditioned on the feature space.

Consider the scatter plots of class pairs (B/M), (B/W), (D/W), and (H/W) in Figures 4 and 5. For
all these cases a single Gaussian would not have been able to model the desired pdf’s. Moreover, different
number of Gaussians are required, in general, for the two classes within each pairwise classifier. Thus
the flexibility of the BPC architecture in not only choosing the right features, but also in automatically
deciding the right number of Gaussians to model the pdf’s for different classes, was found to be useful for
the two datasets. Such flexibility is not available in conventional classifiers. Thus domain knowledge about
the feature space together with information about the number of modes of each class in the corresponding
feature space can be extracted from the BPC architecture.

4.4 Distance between classes

In conventional methods where a single classifier is used for the whole C class problem, an estimate of
the distance between two classes could be obtained from the “confusion matrix” of training/validation set.
Higher is the number of class w; examples getting classified into class w; and vice versa, the “closer” are the
two classes. Unfortunately, this kind of estimate is influenced by the type of the classifier used, instead of
solely being a property of the domain itself.

The BPC framework provides a classifier independent measure of distance between class pair (w;,w;) in
terms of the relevance function R(F;;). If F;; is a feature space in which the discrimination between two
classes is high, then smaller relevance implies that it is harder to distinguish between the classes, which in turn
implies that the two classes are “close” to each other in some sense. Table 3 contains the relevance measures
between all pairs of classes for LETTER-I dataset. Since relevance is symmetric, only the upper triangular
matrix is used for relevance measures. The lower triangular matrix contains the number of features required
to distinguish between two classes. Relevance measures that are towards the lower and higher end are bold
faced. The pair of classes that were found to be “close” to each other in terms of the relevance function
using the LETTER-I dataset were (B/E), (B/R), (0/Q), (K/X), (P/F), etc. Classes that were found to be
“distant” from each other were (H/Z), (L/S), (P/V), (A/L), etc. These results are particularly interesting as
they show how the BPC framework is able to extract expected domain knowledge. The distance information
is also useful, for example, to hierarchically cluster the characters.
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